国产无在线不卡专区,日韩在线精品特黄,久久婷婷五月综合色一,狠狠色伊人久久精品综合网tv

                                                                                400-081-4789

                                                                                信息中心

                                                                                Information Center

                                                                                微生物知識

                                                                                首頁 / 信息中心 / 微生物知識

                                                                                抗耐藥菌的終極武器:不是新型抗生素?

                                                                                時間:2023-03-23      來源:Graham 藥渡      點擊:686次

                                                                                古老而狡猾的敵人


                                                                                細菌存在時間遠超人類歷史,人體內細菌的數(shù)量(近100萬億)也遠超人類的感知。面對自然界及其它物種(包括人類)的生存和繁殖威脅,在漫長的歷史長河中,細菌演化出一套高度復雜且精密的進化、防御機制。細菌通過遺傳突變實現(xiàn)演化,其中一些突變是隨機的,另一些則是通過其它細菌來獲得。這些突變由親代細菌傳給子代,進而賦予了后代細菌抵御抗生素進攻的能力。
                                                                                細菌抵御進攻的第一道防線通常是其細胞壁及細胞膜,細菌通過收縮邊界,降低細胞壁通透性,阻止抗生素進入其內部。即使極少部分抗生素突破了第一道防線,往往會立即面臨細菌自身的掃蕩、驅逐機制(外排泵),這是第二道防線。位于細菌細胞膜上的外排泵類似于反向真空吸塵器,可以將好不容易才突破細胞壁防線的抗生素排除。
                                                                                當然,即使這樣,一些抗生素也會局部突破第二道防線,進入細菌體內。然而,在細菌體內還存在類似于β-內酰胺酶之類的切割酶,它可以攻擊并切割β-內酰胺類抗生素,破壞抗生素分子完整的結構,進而使其喪失對細菌的攻擊能力。而β-內酰胺類抗生素恰恰是目前人類應用最廣泛、使用量最大的一類抗生素。除此以外,細菌還能通過諸如化學基團干擾、結構改變等方式應對抗生素的攻擊。

                                                                                細菌的多道防線機制是自然界最古老的創(chuàng)造之一。在與人類共同演化的過程中,每個節(jié)點似乎都不輸人類,按照這個規(guī)律發(fā)展下去,人類在和細菌的“軍備競賽”中將面臨極其嚴峻的后果。

                                                                                如下表所示,包括抗真菌藥物在內的新型抗生素上市后,耐藥菌迅速產(chǎn)生。


                                                                                新型抗生素耐藥一覽(來源:時節(jié)創(chuàng)投)

                                                                                隨著抗生素的廣泛應用,抗菌藥物耐藥已成全世界亟待解決的重要公共衛(wèi)生問題。2020年6月世界衛(wèi)生組織預測,由于2019冠狀病毒大流行導致抗生素的使用增加,最終將導致更高的細菌耐藥率,進而影響到大流行期間和以后的疾病負擔和死亡人數(shù),也許下一次“無聲的大流行”來自臨床上的細菌耐藥。
                                                                                在“2020耐藥格蘭陰性菌論壇”期間,上海市新冠肺炎救治專家組組長、復旦大學附屬華山醫(yī)院感染科主任張文宏在呼吁:“我國應該拿出新冠防控一半的力量,來落實好抗菌藥物耐藥的防控措施,著力避免耐藥菌引起的死亡。”

                                                                                抗生素的悖論


                                                                                根據(jù)美國疾病預防控制中心的數(shù)據(jù),每年有近300萬美國人被抗生素耐藥性細菌感染。其中,大約有35000人死亡。全球范圍內,每年約有70萬人死于這類感染。世界衛(wèi)生組織預計,以目前的速度,到2050年,每年可能有約1000萬人死于耐藥性細菌感染。
                                                                                顯而易見,在抗耐藥菌領域存在著巨大未滿足的臨床需求。但我們不得不接受一個事實:自從上世紀80年代達托霉素被發(fā)現(xiàn)以來,我們已經(jīng)三十多年沒有研發(fā)出新機制的抗生素了。究其原因,是發(fā)現(xiàn)抗生素并將其推向市場對制藥公司來說通常是一個虧本的買賣。
                                                                                2017年的一項估計顯示,開發(fā)一種抗生素的成本約為15億美元,與此同時,抗生素銷售產(chǎn)生的平均收入約為每年4600萬美元。因此,許多大型制藥公司已經(jīng)退出市場,轉而追求有利可圖的重磅藥,比如近年來紅到發(fā)紫的腫瘤、免疫領域的藥物。
                                                                                新藥研發(fā)是一個艱難而燒錢的過程,對于抗生素來說尤其如此。站在藥物經(jīng)濟學的角度,抗生素的研發(fā)遠不及其它領域創(chuàng)新藥有利。
                                                                                首先,在不考慮一些需要長期服用抗生素的慢性疾病的情況下,抗生素臨床使用周期較短,長則5-7天,短則1-3天。相對較短的生命周期天然地壓縮了藥物銷量,進而影響了藥企的利潤。
                                                                                其次,抗生素使用量增速最快的市場往往是經(jīng)濟落后的國家或地區(qū),支付能力極為有限,即使是歐美國家也面臨隨時被替代的風險。例如,在英國,國家健康與護理卓越研究所 (NICE)負責評估新藥的臨床獲益和成本,盡量壓低抗生素類藥物的價格;一種新藥要納入澳大利亞政府的藥品福利計劃(該計劃補貼藥物費用)必須得到衛(wèi)生專業(yè)人員和經(jīng)濟學家委員會的批準,該委員會評估該藥物是否物有所值。
                                                                                最后,一款臨床顯著獲益的新型抗生素上市后并不會像其它領域的新藥一樣被廣泛使用。恰恰相反,它的宿命常常是“刀兵入庫,馬放南山”。因為在現(xiàn)有抗生素能發(fā)揮藥效的情況下,不會輕易動用新型抗生素,這是為了減緩臨床耐藥菌進化的步伐,給臨床醫(yī)生留下最后一張底牌。

                                                                                疫苗或可破局


                                                                                2016年,為積極響應世界衛(wèi)生組織發(fā)布的《抗微生物藥物耐藥性全球行動計劃》,我國多個部門聯(lián)合印發(fā)了《遏制細菌耐藥國家行動計劃(2016-2020年)》,在國家層面采取綜合治理措施應對細菌耐藥,從藥物研發(fā)、生產(chǎn)、流通、應用、環(huán)境保護等各個環(huán)節(jié)加強了監(jiān)管,其中提到,將支持新型抗感染藥物、疫苗的研發(fā)。

                                                                                2017年,世界衛(wèi)生組織發(fā)布了一份“抗菌素耐藥性(AMR)重點細菌病原體”清單,以指導開發(fā)新的有效藥物以對抗抗菌素耐藥性的研究重點。目前,只有三種針對優(yōu)先細菌病原體的獲得許可的疫苗,分別是:肺炎球菌結合疫苗 (PCV)、 b型流感嗜血桿菌(Hib)疫苗和傷寒結合疫苗 (TCV)。

                                                                                其中,肺炎球菌結合疫苗 (PCV)在嬰幼兒中的常規(guī)疫苗接種使得侵襲性肺炎鏈球菌病(IPD)發(fā)病持續(xù)減少,且在兒童常規(guī)免疫規(guī)劃背景下,未接種PCV的大齡兒童和成人的IPD疾病負擔也顯著下降。b型流感嗜血桿菌(Hib) 疫苗能誘導機體產(chǎn)生免疫記憶,產(chǎn)生強免疫反應,而且對再次接種亦能產(chǎn)生加強反應,提高了疫苗的保護性能。傷寒結合疫苗 (TCV)可有效降低9個月至16歲兒童的傷寒菌血癥風險。
                                                                                2018-2019年巴基斯坦海得拉巴爆發(fā)耐藥性傷寒沙門氏菌感染,在為 13,000多名兒童接種傷寒結合疫苗后,研究人員發(fā)現(xiàn)該疫苗能夠在人口稠密的環(huán)境中遏制廣泛耐藥的傷寒沙門氏菌爆發(fā)。
                                                                                在最近的新冠大流行期間,以mRNA為代表的新型疫苗的快速響應,再次讓人們看到了疫苗在抵御傳染病爆發(fā)方面的不可或缺的作用。越來越多的專家認為,后疫情時代疫苗,尤其是新型疫苗可以在其它領域,比如腫瘤、抗耐藥菌,發(fā)揮關鍵作用。
                                                                                疫苗是預防性使用的,因此在細菌在初始感染后開始繁殖(低病原體負荷)之前以及不同組織和器官受到影響之前就起效,這大大降低了產(chǎn)生耐藥性突變并傳播的可能性。此外,抗生素通常是單靶點的,而疫苗通常包含多個免疫原性表位,如果要突破疫苗的防線,細菌需要產(chǎn)生更多的突變才能對疫苗產(chǎn)生耐藥。


                                                                                抗生素和疫苗的作用機制和耐藥性的出現(xiàn)
                                                                                疫苗可以直接或間接減少抗微生物藥物耐藥性的出現(xiàn)和傳播。首先,針對特定細菌病原體的疫苗可降低耐藥病原體的流行率以及抗生素的使用。這種效果的最佳記錄例子可能是肺炎球菌疫苗。此外,疫苗接種通過預防病毒感染間接影響抗微生物藥物耐藥性。例如,流感疫苗可以減少抗生素的不當使用,并預防感染流感病毒的患者可能發(fā)生的繼發(fā)性細菌重疊感染。

                                                                                抗耐藥菌疫苗的開發(fā)進展

                                                                                總結


                                                                                日益凸顯的細菌耐藥問題是現(xiàn)代醫(yī)學的嚴重威脅,也給各國醫(yī)療保健系統(tǒng)增加沉重的負擔。隨著全球經(jīng)濟增速放緩及通脹的威脅,各國公共衛(wèi)生決策者不得不在衛(wèi)生投資中做出正確的選擇。疫苗是解決抗耐藥菌耐藥性問題的前置工具,是控制醫(yī)療保健體系成本最具效率和效果的方法。隨著生物化學合成技術、人工變異技術、分子微生物學技術、基因工程技術等現(xiàn)代生物技術的發(fā)展,新型疫苗開發(fā)技術不斷成熟,疫苗研發(fā)、存儲、配送也將朝著更具成本效益和公平性的方向發(fā)展,我們期待將來更多的抗耐藥菌疫苗能發(fā)揮出它們真正的作用。

                                                                                參考文獻

                                                                                1.Frost I, Sati H, Garcia-Vello P, Hasso-Agopsowicz M, Lienhardt C, Gigante V, Beyer P. The role of bacterial vaccines in the fight against antimicrobial resistance: an analysis of the preclinical and clinical development pipeline. Lancet Microbe. 2023 Feb;4(2):e113-e125. doi: 2.1016/S2666-5247(22)00303-2. Epub 2022 Dec 14. PMID: 36528040; PMCID: PMC9892012.

                                                                                3.Micoli, F., Bagnoli, F., Rappuoli, R. et al. The role of vaccines in combatting antimicrobial resistance. Nat Rev Microbiol 19, 287–302 (2021). https://doi.org/10.1038/s41579-020-00506-3

                                                                                4.Rosini R, Nicchi S, Pizza M, Rappuoli R. Vaccines Against Antimicrobial Resistance. Front Immunol. 2020 Jun 3;11:1048. doi: 10.3389/fimmu.2020.01048. Erratum in: Front Immunol. 2020 Jul 21;11:1578. PMID: 32582169; PMCID: PMC7283535.

                                                                                5.Bloom DE, Black S, Salisbury D, Rappuoli R. Antimicrobial resistance and the role of vaccines. Proc Natl Acad Sci U S A. 2018 Dec 18;115(51):12868-12871. doi: 10.1073/pnas.1717157115. PMID: 30559204; PMCID: PMC6305009.

                                                                                6.https://www.nature.com/articles/d42473-021-00356-4

                                                                                7.Why big pharma has abandoned antibiotics

                                                                                8.Develop more vaccines to combat ‘silent pandemic’ of antimicrobial resistance: WHO

                                                                                9.https://seads.adb.org/solutions/vaccines-against-antimicrobial-resistance-short-and-long-term-solutions-end-invisible

                                                                                10.The antibiotic paradox: why companies can’t afford to create life-saving drugs

                                                                                11.被忽視的威脅:耐藥性細菌不輸新冠病毒,每年造成數(shù)十萬人死亡

                                                                                12.高端抗生素:人跡罕至的賽道

                                                                                13.投資與回報不成比例眾多抗生素企業(yè)倒閉或裁撤

                                                                                14.[關注]疫苗科學如何幫助解決抗菌素耐藥性

                                                                                15.https://microbenotes.com/central-dogma-replication-transcription-translation/

                                                                                16.Biography of Resistance: The Epic Battle Between People and Pathogens

                                                                                17.穆罕穆德.H.扎曼.耐藥菌小史[M].北京:中信出版社,2021


                                                                                我的詢價單

                                                                                0件商品
                                                                                清空詢價單

                                                                                去詢價單結算